\qquad
\qquad

Flying T-Shirt Physics Worksheet Answers Position, Velocity \& Acceleration

The position, velocity and acceleration of an object can be calculated using the following equation:

$$
p=p_{o}+v_{o} \cdot t+0.5 \cdot a \cdot t^{2}
$$

where

$$
\begin{aligned}
& p=\text { position }(\mathrm{m}) \\
& p_{o}=\text { starting position }(\mathrm{m}) \\
& v_{o}=\text { starting velocity }(\mathrm{m} / \mathrm{s}) \\
& a=\text { acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\
& t=\text { time }(\mathrm{s})
\end{aligned}
$$

1. Calculate the distance traveled $\left(p-p_{o}\right)$ by a ball after 6 seconds. Assume its initial velocity is 5 m / s and no acceleration.

$$
\begin{aligned}
& \left(p-p_{o}\right)=v_{o} \cdot t+0.5 \cdot a \cdot t^{2} \\
& \left(p-p_{o}\right)=5 \cdot 6+0.5 \cdot 0 \cdot 6^{2} \\
& \left(p-p_{o}\right)=30
\end{aligned}
$$

The ball traveled 30 meters.
2. Calculate the distance traveled $\left(p-p_{o}\right)$ by a ball after 6 seconds. Assume its initial velocity is 5 m / s and an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& \left(p-p_{o}\right)=v_{o} \cdot t+0.5 \cdot a \cdot t^{2} \\
& \left(p-p_{o}\right)=5 \cdot 6+0.5 \cdot 1 \cdot 6^{2} \\
& \left(p-p_{o}\right)=48
\end{aligned}
$$

3. Calculate the distance traveled $\left(p-p_{o}\right)$ by a ball after 6 seconds. Assume its initial velocity is 5 m / s and an acceleration of $-1 \mathrm{~m} / \mathrm{s}^{2}$. (The minus sign indicates the ball is slowing down as opposed to speeding up.)

$$
\begin{aligned}
& \left(p-p_{o}\right)=v_{o} \cdot t+0.5 \cdot a \cdot t^{2} \\
& \left(p-p_{o}\right)=5 \cdot 6-0.5 \cdot 1 \cdot 6^{2} \\
& \left(p-p_{o}\right)=12
\end{aligned}
$$

4. Calculate the amount of time the ball has been moving if it traveled 50 meters, had an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ and an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. Hint: use the quadratic formula to solve.

$$
\begin{aligned}
& 0.5 \cdot a \cdot t^{2}+v_{o} \cdot t-\left(p-p_{o}\right)=0 \\
& 0.5 \cdot 2 \cdot t^{2}+5 \cdot t-50=0 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}=\frac{-5 \pm \sqrt{5^{2}+4 \cdot 1 \cdot 50}}{2 \cdot 1} \\
& t=5
\end{aligned}
$$

The ball was moving for 5 seconds.

