Motion Equations - Problem Worksheet - HW 1

1) An Indy-500 race car's velocity increases from $+4.0 \mathrm{~m} / \mathrm{s}$ to $+36 \mathrm{~m} / \mathrm{s}$ over a 4 s period. What is the acceleration?
2) The Indy- 500 race car then slows from $+36 \mathrm{~m} / \mathrm{s}$ to $+15 \mathrm{~m} / \mathrm{s}$ over 3.0 s . What is the acceleration over this time interval?
3) A car is coasting backwards down a hill at $-3.0 \mathrm{~m} / \mathrm{s}$ when the driver gets the engine started. After 2.5 s , the car is moving uphill at a velocity of $+4.5 \mathrm{~m} / \mathrm{s}$. What is the car's acceleration?
4) A bus is moving at $25 \mathrm{~m} / \mathrm{s}$. The driver steps on the brakes, and the bus stops in 3.0 s . What is the acceleration of the bus while braking?
5) A golf ball rolls up a hill toward a Putt-Putt hole.
a) If it starts with a velocity of $+2.0 \mathrm{~m} / \mathrm{s}$ and accelerates at $-0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is its velocity after $\quad 2.0 \mathrm{~s}$?
b) If the acceleration occurs for 6.0 s , what is its final velocity?
c) Describe in words, the motion of the golf ball.
6) A bus traveling at $+30 \mathrm{~km} / \mathrm{hr}$ accelerates at a constant $+3.5 \mathrm{~m} / \mathrm{s}^{2}$ for 6.8 s . What is its final velocity in $\mathrm{km} / \mathrm{hr}$?
7) If a car accelerates from rest at a constant $5.3 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take to reach $28 \mathrm{~m} / \mathrm{s}$?
8) A car slows from $22 \mathrm{~m} / \mathrm{s}$ to $3 \mathrm{~m} / \mathrm{s}$ with an acceleration of $-2.1 \mathrm{~m} / \mathrm{s}^{2}$. How long does this take?
9) A race car traveling at $+44 \mathrm{~m} / \mathrm{s}$ is accelerated to a velocity of $+22 \mathrm{~m} / \mathrm{s}$ over an 11 s interval. What is the displacement during this time?
10) A rocket traveling at $+88 \mathrm{~m} / \mathrm{s}$ is accelerated to $+132 \mathrm{~m} / \mathrm{s}$ over a 15 s interval. What is its displacement during this time?
11) A car accelerates from $15 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ while it travels 125 m . How long does this motion take?
12) A bike rider accelerates to a velocity of $7.5 \mathrm{~m} / \mathrm{s}$ during 4.5 s . The bike's displacement is +19 m . What was the initial velocity of the bike?
13) An airplane starts from rest and accelerates at $+3 \mathrm{~m} / \mathrm{s}^{2}$ for 30 s before leaving the ground. What is the displacement during this time?
14) Starting from rest, a race car moves 110 m in the 5.0 s of uniform acceleration. What is the car's acceleration?
15) A driver brings a car traveling at $+22 \mathrm{~m} / \mathrm{s}$ to a full stop in 2 s .
a) What is the car's acceleration?
b) How far does it travel before stopping?
16) A biker passes a lamppost at the crest of a hill at $+4.5 \mathrm{~m} / \mathrm{s}$. She accelerates down the hill at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 12 s . How far does she move down the hill in this time?
17) An airplane accelerates from a velocity of $21 \mathrm{~m} / \mathrm{s}$ at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$ over +535 m . What is its final velocity?
18) The pilot stops a plane in 484 m using an acceleration of $-8 \mathrm{~m} / \mathrm{s}^{2}$. How fast was the plane moving before braking began?
19) A person wearing a shoulder harness can survive a car crash if the acceleration is smaller than $-300 \mathrm{~m} / \mathrm{s}^{2}$. How far must the front end of a car collapse if it crashes while going 101 $\mathrm{km} / \mathrm{hr}$?
20) A car is initially sliding backwards down a hill at $-25 \mathrm{~km} / \mathrm{hr}$. The driver guns the car. By the time the car's velocity is $+35 \mathrm{~km} / \mathrm{hr}$, it is +3.2 m from its starting point. Find the acceleration.
